## How high does an aircraft have to be to be visible to a radar?

**Steve Smith** 

16 March 2014

radar-earth center-aircraft angle  $\theta$ . See Figure 1.



Now from the definition of a radian, if the angle  $\theta$  is measured in radians, then

 $s = R\theta$ 

and so we could write

$$\theta = \frac{s}{R}$$

Now have a look at triangle AMC. Using SOH-CAH-TOA we can write

$$R = (R+h)\cos(\theta) = (R+h)\cos\left(\frac{s}{R}\right)$$

Multiply out the brackets:

$$R = R\cos\left(\frac{s}{R}\right) + h\cos\left(\frac{s}{R}\right)$$

Subtract  $R \cos\left(\frac{s}{R}\right)$  from both sides:

$$R - R\cos\left(\frac{s}{R}\right) = h\cos\left(\frac{s}{R}\right)$$

and divide both sides by  $\cos\left(\frac{s}{R}\right)$  we get

$$\frac{R}{\cos\left(\frac{s}{R}\right)} - R = h$$

This can be written as

$$h = R\left(\sec\left(\frac{s}{R}\right) - 1\right) \tag{1}$$

using the definition of sec(x), and factorising the R outside the brackets. It is possible to obtain an infinite series expansion of sec(x) as a polynomial in x. That's the same kind of thing that you get when you do binomial expansions. It turns out that the series expansion for sec(x) is

$$\sec(x) = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \dots$$

Now if *x* is very small, then  $x^4 \ll x^2$ , and  $x^6 \ll x^4$ , etc. In that case,

$$\sec(x) \approx 1 + \frac{1}{2}x^2$$

In our radar situation, radars only see out to a range of about 250 miles (s), whereas the radius of the Earth (R) is about 4000 miles. So  $s \ll R$ , and we can approximate  $\sec(\frac{s}{R})$  by

$$\sec\left(\frac{s}{R}\right) \approx 1 + \frac{1}{2}\left(\frac{s}{R}\right)^2$$

So,

$$h = R\left(1 + \frac{1}{2}\left(\frac{s}{R}\right)^2 - 1\right)$$
$$h = R\left(\frac{1}{2}\left(\frac{s}{R}\right)^2\right)$$
$$h = \left(\frac{1}{2R}\right)s^2$$

or

or

Whew!

To see how good the approximation is, here's a table showing the values of (1) and (2) for different values of *s* from 0 to 250 miles, using R = 4000 miles.

| S   | $R\left(\sec\left(\frac{s}{R}\right)-1\right)$ | $\left(\frac{1}{2R}\right)s^2$ |
|-----|------------------------------------------------|--------------------------------|
| 50  | 0.31252                                        | 0.31250                        |
| 100 | 1.25033                                        | 1.25000                        |
| 150 | 2.81415                                        | 2.81250                        |
| 200 | 5.00521                                        | 5.00000                        |
| 250 | 7.82524                                        | 7.81250                        |

## Table 1: Comparing exact and approximate formulae

The largest error being for the case of s = 250 miles. The error is approximately 77 feet in height! I'm happy with that!

(2)